• OpenAccess
    • List of Articles composite

      • Open Access Article

        1 - Polymer composites containing sheep wool fibers using thermal and sound insulation: from introduction to application
        Mohsen Sadroddini
        As a natural and environmentally friendly fiber, sheep wool has an extraordinary place among all textile fibers due to its unique properties such as high thermal insulation properties, good sound insulation and absorption, self-extinguishing, high flame resistance, low More
        As a natural and environmentally friendly fiber, sheep wool has an extraordinary place among all textile fibers due to its unique properties such as high thermal insulation properties, good sound insulation and absorption, self-extinguishing, high flame resistance, low weight and high strength. Sheep wool fibers are traditionally used in clothing and textiles, but they can be used in various applications. One of the vital industrial applications of sheep wool fibers is to employ them as reinforcing fillers in polymer composites using thermal insulation and sound and acoustic absorbers. This review paper aims to introduce sheep wool fiber and present it as a high-performance fiber (HPF) in the role of a natural and low-cost alternative to synthetic polymer fibers. In this regard, an attempt has been made to conduct a comprehensive review of polymer-sheep wool composites as thermal insulation and sound absorber. Manuscript profile
      • Open Access Article

        2 - A Review of Hydrogels Containing Fibers in Drug Delivery Systems
        Mohammad Hossein Karami Majid Abdouss Mohammadreza Kalaee Omid Moradi
        Hydrogels are three-dimensional networks of hydrophilic polymers capable of absorbing and retaining significant amounts of fluids, which are also widely applied in wound healing, cartilage tissue engineering, bone tissue engineering, release of proteins, growth factors, More
        Hydrogels are three-dimensional networks of hydrophilic polymers capable of absorbing and retaining significant amounts of fluids, which are also widely applied in wound healing, cartilage tissue engineering, bone tissue engineering, release of proteins, growth factors, and antibiotics. In the past decades, a lot of research has been done to accelerate wound healing. Hydrogel-based scaffolds have been a recurring solution in both cases, although their mechanical stability remains a challenge, some of which have already reached the market. To overcome this limitation, the reinforcement of hydrogels with fibers has been investigated. The structural similarity of hydrogel fiber composites to natural tissues has been a driving force for the optimization and exploration of these systems in biomedicine. Indeed, the combination of hydrogel formation techniques and fiber spinning methods has been very important in the development of scaffold systems with improved mechanical strength and medicinal properties. Hydrogel has the ability to absorb secretions and maintain moisture balance in the wound. In turn, the fibers follow the structure of the extracellular matrix (ECM). The combination of these two structures (fiber and hydrogel ) in a scaffold is expected to facilitate healing by creating a suitable environment by identifying and connecting cells with the moist and breathing space required for healthy tissue formation. Modifying the surface of fibers by physical and chemical methods improves the performance of hydrogel composites containing Manuscript profile
      • Open Access Article

        3 - A Review of Hydrogels Containing Fibers in Drug Delivery Systems
        Mohammad Hossein Karami Majid Abdouss Mohammadreza Kalaee Omid Moradi
        Hydrogels are three-dimensional networks of hydrophilic polymers capable of absorbing and retaining significant amounts of fluids, which are also widely applied in wound healing, cartilage tissue engineering, bone tissue engineering, release of proteins, growth factors, More
        Hydrogels are three-dimensional networks of hydrophilic polymers capable of absorbing and retaining significant amounts of fluids, which are also widely applied in wound healing, cartilage tissue engineering, bone tissue engineering, release of proteins, growth factors, and antibiotics. In the past decades, a lot of research has been done to accelerate wound healing. Hydrogel-based scaffolds have been a recurring solution in both cases, although their mechanical stability remains a challenge, some of which have already reached the market. To overcome this limitation, the reinforcement of hydrogels with fibers has been investigated. The structural similarity of hydrogel fiber composites to natural tissues has been a driving force for the optimization and exploration of these systems in biomedicine. Indeed, the combination of hydrogel formation techniques and fiber spinning methods has been very important in the development of scaffold systems with improved mechanical strength and medicinal properties. Hydrogel has the ability to absorb secretions and maintain moisture balance in the wound. In turn, the fibers follow the structure of the extracellular matrix (ECM). The combination of these two structures (fiber and hydrogel ) in a scaffold is expected to facilitate healing by creating a suitable environment by identifying and connecting cells with the moist and breathing space required for healthy tissue formation. Modifying the surface of fibers by physical and chemical methods improves the performance of hydrogel composites containing Manuscript profile
      • Open Access Article

        4 - MOFCOF composites a review of synthesis methods and applications
        Milad Ghani Marziyeh Kavian
        In the past decades, porous materials have attracted a lot of attention in physics, chemistry and materials science. Among various compounds, metal-organic frameworks (Metal organic frameworks, MOFs) and covalent organic frameworks (COFs), as crystalline porous material More
        In the past decades, porous materials have attracted a lot of attention in physics, chemistry and materials science. Among various compounds, metal-organic frameworks (Metal organic frameworks, MOFs) and covalent organic frameworks (COFs), as crystalline porous materials, were developed at a very high speed. MOFs are a subgroup of porous compounds in which organic ligands are connected together with metal cations. COFs are two- or three-dimensional organic solids with extended structures in which the building blocks are connected by strong covalent bonds. These compounds have unique advantages including well-defined and tunable structures, large surface area, high porosity, and ease of framework modification, which make them ideal host substrates for various guests including polymers, metal oxide nanoparticles, and semiconductors to create Converts MOF or COF-based multistructures. Compared to single-component compounds, polycomposites always show new properties due to their synergistic effects. Therefore, to further improve their performance and expand their applications, many efforts have been made to design and fabricate various MOF or COF-based multi-structures. Therefore, in this study, the integration of MOFs and COFs, their manufacturing methods, and the applications of these multiple structures will be investigated. Moreover, the capability of the prepared sorbents in various fields such as sorbent, catalysis and other format will be discussed. Metal–organic frameworks (MOFs) are a class of compounds consisting of metal clusters (also known as SBUs) coordinated to organic ligands to form one-, two-, or three-dimensional structures. Manuscript profile
      • Open Access Article

        5 - Modeling the behavior of polymer matrix composite pipes carrying fluid exposed to hydrocarbon fire
        Alireza Rahimi Ehsan Selahi
        Despite the very good mechanical properties of composite materials, the strength of these materials is not suitable for heat resistance. Therefore, due to the increasing use of composite pipes, especially in the oil, gas and petrochemical industries, fire analysis in th More
        Despite the very good mechanical properties of composite materials, the strength of these materials is not suitable for heat resistance. Therefore, due to the increasing use of composite pipes, especially in the oil, gas and petrochemical industries, fire analysis in these pipes is very important. The most important goal of this research was to investigate the effects of fire on the strength of composite pipes and their failure time by performing a numerical thermal-mechanical analysis for a fluid-carrying composite pipe using MATLAB software. At the first step thermal modeling is carried out and heat distribution, due to the hydro carbonian fire, in the composite pipes is determined in terms of the location and time and then in the mechanical modeling stage, the loss of mechanical properties of the composite pipe due to this increase in temperature is calculated and considering the stresses from the fluid inside the pipe as well as thermal stresses have been created, the total stresses have been calculated. This Thermo-Mechanical model has been validated with the results found in valid articles and used to analyze the behavior of a fluid-carrying composite pipe exposed to hydrocarbon fire. Finally, the Tsai–Wu failure theory was employed to determine the failure time of the pipe in the above-mentioned conditions. By estimating the failure time of the composite pipe, it was possible to determine the pressure bearing capacity and failure time of pressurized composite pipes subjected to fire Manuscript profile
      • Open Access Article

        6 - Polymer processes in the light of artificial intelligence
        Zeinab Sadat Hosseini
        Artificial Intelligence (AI) is transforming the daily life of humans on the planet by entering different fields. This tool has opened a new window on the activists in the field of polymer science and engineering, like other sciences, and it can be widely used in the ma More
        Artificial Intelligence (AI) is transforming the daily life of humans on the planet by entering different fields. This tool has opened a new window on the activists in the field of polymer science and engineering, like other sciences, and it can be widely used in the manufacture of polymers and their derivatives, mixing processes, forming polymers, composites, and designing and manufacturing the related equipment. Artificial intelligence algorithms can enable the analysis of a large and unlimited amount of data obtained from sensors and process monitoring systems. These patterns and methods have provided the ability to process cases that are difficult or impossible to detect manually and are used in modeling and simulation, process control, error detection and recommender systems, and can be used to achieve optimal mixing by considering the properties of the mixture components and technical specifications, can be provided recommendations for the desired product. Artificial intelligence can control the process factors to ensure consistency and uniform dispersion of additives, fillers, and colors, resulting in higher quality mixing and products with optimized properties. It can also help reduce the cycle time without compromising product quality, which can lead to significant cost savings and the greater productivity, and can enable preventative maintenance. In this study, the application of artificial intelligence in some polymer processes was investigated, specifically in the rubber compounding, the composite preparation and the extrusion, which promises a new direction in the polymer processes. Manuscript profile